
Implementation Experience with Ada 2005

Session Report

Chair: Alan Burns

Rapporteur: Andy Wellings

Session Goals

The goals of this session were to

• Discuss implementation experience with the new real-

time features

• Review the support provided by the new real-time fea-

tures

• Review features proposed but omitted from Ada 2005

Implementing the New Real-time Features

Mario Aldea Rivas first gave an overview of the approach

their paper had taken on implementing the new Ada 2005

real-time services in MaRTE OS and GNAT. The most im-

portant of these new services are:

• timing events

• execution-time clocks and timers

• dynamic priorities for protected objects

• immediate priority changes

• group execution-time budgets

• new scheduling and task dispatching mechanisms

Of these, the first five had already been implemented and

would be released by AdaCore in the near future. The rest

would be done during the summer of 2007.

For timing events, Mario indicated that it was not pos-

sible to implement timing event straight from the clock in-

terrupt handler as there was no mechanisms provided by

POSIX to do so. He indicated that there were essentially

two approaches: one where run-time threads are introduced

for each timing event, the other where the OS is changed.

He said they had implemented both approaches and that by

changing the OS, there was a significant performance gain.

For execution-time clocks and handlers, Mario reported

that the implementation was much simpler as both the

POSIX and Ada 2005 standards took a similar stance. In

particular:

• Neither of the standards define which task/thread is

charged with the overheads of interrupt handlers and

run-time services on behalf of the system

• Both standards state that the execution time is set to

zero at the creation of the task /thread

• Ada 2005 says the time spent during task activation

must be charged to the task execution time clock - this

happens in GNAT since activation is executed by the

thread used to implement the Ada task.

As a consequence, no modifications to the compiler or

to the run-time system have been necessary. Mario reported

that execution time accounting introduces a small overhead

to context switch time (less than 5

Execution-timers had been built on top of the timers and

had caused no significant implementation problems. Group

execution time accounting, however, required significant

modifications to the OS as POSIX did not support thread

groups. The facility added an extra 9

Juan Zamorano gave a presentation on their implementa-

tion of the same facilities in the Open Ravenscar Kernel on

a bare board Leon (based on the SPARC V8 architecture).

Juan indicated that the scarce hardware support for timers

on that board meant that significant software support was

required. This had added a 50

Following the two presentations it was noted that the

Workshop was not aware of other projects implementing

2005 real-time facilities.

Discussions on the New Features

The main discussions following the presentations fo-

cused on the overheads and inaccuracies of the CPU ac-

counting model.

The following issues were raised:

1. Context switch time – Mario reported that there was

no leakage of CPU time during context switches.

2. System and Application interrupts (e.g. clocks) –

whilst Ada allowed interrupt handling to be charged



to the executing tasks there was concerns that this was

a significant inaccuracy.

3. Timing events code – it was again noted that the code

executed by timing event handlers was application

level code and therefore was not fixed. This would

again be charged inappropriately to the running task.

However, it was also pointed out that as the code was a

protected procedure, the time was at least bounded per

handler.

4. Proxy model of Protected Objects – concern was ex-

pressed that the proxy model of implementation for

protected objects could result in a significant inaccu-

racy as one task could execute a significant amount of

code on behalf of another.

There was a long discussion of whether the CPU ac-

counting model was useable given the inherent inaccura-

cies. Various points were noted:

• The facilities could be used with a measurement-based

approach. Execution time could be measured during

system testing and this figure used at run-time. How-

ever, this approach is fragile. Any small change to

the application code would mean that the system-level

timing measurements would have to be redone.

• For hard real-time systems, it was noted that there had

to be an associated analysis model. The worst-case

overheads could then be added to the execution time

of each task. However, this approach could be very

pessimistic as each task would be charged the worst

case overhead.

• It was also pointed out that the greatest error was on

the value of the worst-case execution time itself and

that adding a small error was at the noise level.

Another point raised was that the impact of handling low

priority interrupts on high priority task could be significant.

The workshop concluded that there is a need to investi-

gate the overheads and the extra cost of trying to do better

accounting. Also the overhead of a better model of priori-

tized interrupt handling should be investigated.

Application-level Scheduling

Michael Gonzalez Harbour gave an overview of the cur-

rent status of application-defined scheduling work that had

been reported at the last workshop. Although this had failed

to get in to the standard, an implementation had been pro-

duced and would be released as an extension to GNAT. The

hope was that people would use the facilities and that it

might eventually become a de facto standard. The work-

shop reaffirmed its support for the need of such a facility in

Ada.

Ravenscar

This session of the Workshop concluded with a discus-

sion of the continuing experience with the Ravenscar pro-

file. Juan Antonio de la Puente raised the issue of execu-

tion timers and group budgets. Although Ravenscar allows

execution-time clocks, it prohibits timers and group bud-

gets. He proposed that we should allow one timer per task.

The motivation is to make sure a task does not consume

more than its budget.

Whilst there was some support for this proposal, concern

was expressed on how a Ravenscar program would respond

to a timer expiring. There are not asynchronous interaction

mechanisms in Ravenscar. Juan Antonio indicated that this

was similar to the way task termination was handled. If

a task terminated in Ravenscar (which it should not), the

event is brought to the attention of the program and then it is

implementation-defined what mechanisms the programmer

can use.

It was pointed out that a monitor task could always read

the execution times of other tasks and discover the overrun.

However, there would clearly be a delay in doing this. There

was no consensus position reached.

The Workshop felt that adding Group budgets opened up

a new profile. This ought to be considered perhaps in a con-

text where there are more than one Ravenscar applications

(in effect, partitions) running on the same run-time.

Summary

The following summarised the positions taken by the

Workshop during this session:

1. There is a need to investigate the overheads and the

extra cost of trying to do better accounting and of the

overheads of doing a better model of prioritized inter-

rupt handling.

2. There is continued support for application-defined

scheduling.

3. There is no consensus on adding CPU Timers into

Ravenscar (i.e. it is an open issue that needs further

investigation).

4. Group budgets and the coexistence of multiple Raven-

scar applications on a single processing node needs

further investigation.


