Implementation Experience with Ada 2005
Session Report

Chair: Alan Burns
Rapporteur: Andy Wellings

Session Goals

The goals of this session were to

e Discuss implementation experience with the new real-
time features

e Review the support provided by the new real-time fea-
tures

e Review features proposed but omitted from Ada 2005

Implementing the New Real-time Features

Mario Aldea Rivas first gave an overview of the approach
their paper had taken on implementing the new Ada 2005
real-time services in MaRTE OS and GNAT. The most im-
portant of these new services are:

e timing events

e cxecution-time clocks and timers

e dynamic priorities for protected objects

e immediate priority changes

e group execution-time budgets

e new scheduling and task dispatching mechanisms

Of these, the first five had already been implemented and
would be released by AdaCore in the near future. The rest
would be done during the summer of 2007.

For timing events, Mario indicated that it was not pos-
sible to implement timing event straight from the clock in-
terrupt handler as there was no mechanisms provided by
POSIX to do so. He indicated that there were essentially
two approaches: one where run-time threads are introduced
for each timing event, the other where the OS is changed.
He said they had implemented both approaches and that by
changing the OS, there was a significant performance gain.

For execution-time clocks and handlers, Mario reported
that the implementation was much simpler as both the
POSIX and Ada 2005 standards took a similar stance. In
particular:

e Neither of the standards define which task/thread is
charged with the overheads of interrupt handlers and
run-time services on behalf of the system

e Both standards state that the execution time is set to
zero at the creation of the task /thread

e Ada 2005 says the time spent during task activation
must be charged to the task execution time clock - this
happens in GNAT since activation is executed by the
thread used to implement the Ada task.

As a consequence, no modifications to the compiler or
to the run-time system have been necessary. Mario reported
that execution time accounting introduces a small overhead
to context switch time (less than 5

Execution-timers had been built on top of the timers and
had caused no significant implementation problems. Group
execution time accounting, however, required significant
modifications to the OS as POSIX did not support thread
groups. The facility added an extra 9

Juan Zamorano gave a presentation on their implementa-
tion of the same facilities in the Open Ravenscar Kernel on
a bare board Leon (based on the SPARC V8 architecture).
Juan indicated that the scarce hardware support for timers
on that board meant that significant software support was
required. This had added a 50

Following the two presentations it was noted that the
Workshop was not aware of other projects implementing
2005 real-time facilities.

Discussions on the New Features

The main discussions following the presentations fo-
cused on the overheads and inaccuracies of the CPU ac-
counting model.

The following issues were raised:

1. Context switch time — Mario reported that there was
no leakage of CPU time during context switches.

2. System and Application interrupts (e.g. clocks) —
whilst Ada allowed interrupt handling to be charged



to the executing tasks there was concerns that this was
a significant inaccuracy.

3. Timing events code — it was again noted that the code
executed by timing event handlers was application
level code and therefore was not fixed. This would
again be charged inappropriately to the running task.
However, it was also pointed out that as the code was a
protected procedure, the time was at least bounded per
handler.

4. Proxy model of Protected Objects — concern was ex-
pressed that the proxy model of implementation for
protected objects could result in a significant inaccu-
racy as one task could execute a significant amount of
code on behalf of another.

There was a long discussion of whether the CPU ac-
counting model was useable given the inherent inaccura-
cies. Various points were noted:

e The facilities could be used with a measurement-based
approach. Execution time could be measured during
system testing and this figure used at run-time. How-
ever, this approach is fragile. Any small change to
the application code would mean that the system-level
timing measurements would have to be redone.

e For hard real-time systems, it was noted that there had
to be an associated analysis model. The worst-case
overheads could then be added to the execution time
of each task. However, this approach could be very
pessimistic as each task would be charged the worst
case overhead.

e It was also pointed out that the greatest error was on
the value of the worst-case execution time itself and
that adding a small error was at the noise level.

Another point raised was that the impact of handling low
priority interrupts on high priority task could be significant.

The workshop concluded that there is a need to investi-
gate the overheads and the extra cost of trying to do better
accounting. Also the overhead of a better model of priori-
tized interrupt handling should be investigated.

Application-level Scheduling

Michael Gonzalez Harbour gave an overview of the cur-
rent status of application-defined scheduling work that had
been reported at the last workshop. Although this had failed
to get in to the standard, an implementation had been pro-
duced and would be released as an extension to GNAT. The
hope was that people would use the facilities and that it
might eventually become a de facto standard. The work-
shop reaffirmed its support for the need of such a facility in
Ada.

Ravenscar

This session of the Workshop concluded with a discus-
sion of the continuing experience with the Ravenscar pro-
file. Juan Antonio de la Puente raised the issue of execu-
tion timers and group budgets. Although Ravenscar allows
execution-time clocks, it prohibits timers and group bud-
gets. He proposed that we should allow one timer per task.
The motivation is to make sure a task does not consume
more than its budget.

Whilst there was some support for this proposal, concern
was expressed on how a Ravenscar program would respond
to a timer expiring. There are not asynchronous interaction
mechanisms in Ravenscar. Juan Antonio indicated that this
was similar to the way task termination was handled. If
a task terminated in Ravenscar (which it should not), the
event is brought to the attention of the program and then it is
implementation-defined what mechanisms the programmer
can use.

It was pointed out that a monitor task could always read
the execution times of other tasks and discover the overrun.
However, there would clearly be a delay in doing this. There
was no consensus position reached.

The Workshop felt that adding Group budgets opened up
anew profile. This ought to be considered perhaps in a con-
text where there are more than one Ravenscar applications
(in effect, partitions) running on the same run-time.

Summary

The following summarised the positions taken by the
Workshop during this session:

1. There is a need to investigate the overheads and the
extra cost of trying to do better accounting and of the
overheads of doing a better model of prioritized inter-
rupt handling.

2. There is continued support for application-defined
scheduling.

3. There is no consensus on adding CPU Timers into
Ravenscar (i.e. it is an open issue that needs further
investigation).

4. Group budgets and the coexistence of multiple Raven-
scar applications on a single processing node needs
further investigation.



